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Resting state

BOLD signal fluctuations during undirected brain activity
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Resting state

BOLD signal fluctuations during undirected brain activity

There is no model for signal, such as expected response
In task FMRI

Effect size




Resting state

BOLD signal fluctuations during undirected brain activity

There is no model for signal, such as expected response
In task FMRI

Resort to describing relationships between brain regions

Correlation matrices, graph theory, functional/
effective/??? “connectivity”

Factoring data into spacextime components in
statistically interesting ways (PCA, ICA)



Resting state

Resort to describing relationships between brain regions
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Resting state

Interpret correlation strength as proxy (or stand-in) for
brain function coupling between regions

rest_=ub00440.BEZ_rh SSM.std.60.niml.dset, node 2056

11468.273

rest_=ub00440.BEZ_1h SSM.std.60.niml.dset, node 2205

TR {2.00s) step
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The magic of resting state @iswal %)

Magnitude

G. 3. (Left) FMRI task-activation response to bilateral left and right finger movement, su

ictuation response using the methods of this paper. See text for assignment of labeled regions. Red is positive comrelation, and yellow
negative.

perimposad on a GRASS anatomic image. (Right)



Resting state PROBLEM

Neuronally driven BOLD fluctuations of interest i
AND

Fluctuations from respiration, heart beat, motion
- Are all spatially correlated ®

—
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The origin of our troubles

We have no model for signal
Nothing like the expected response (regressors) of task FMRI

We have no good models for noise
We have some, but they're far from perfect

Effect size (as correlation) is a spatially varying function of noise
(fluctuations of no interest)
* Noise can bias correlations up, or down depending on the

noise’s spatial covariance
* |n task FMRI by contrast, noise affects variance of effect

size estimate

Z.5.5 16/06/13




The origin of our troubles

Difficult to attach meaning to effect size in RS-FMRI

Effect in RS-FMRI is like an SNR measure, affected by
changes in both signal (numerator) and noise
(denominator)

For example, if you have 2 groups

more motion 2 more noise =2 more
correlation (bias) > group differences

Weak but consistent bias - significant difference

Some sources have brain-wide (global) effects on
correlation distribution (e.g. ET-CO2 , motion, etc.)



Sources of bias and error

Head motion (van Dijk, 2012) (Power, 2012)
Physiological "Noise”
* Respiratory or cardiac cycles (Glover, 2002)

* Non-stationarity of breathing and cardiac
rhythms
(Birn, 2006) (Shmueli, 2007) (Chang, 2009)

Hardware instability (Jo, 2010)
Anatomical bias
Pre-processing




Preprocessing

Despiking

Slice-timing correction

Motion correction

Alignment with anatomy

Spatial normalization

Spatial slmoothing
(with 6 mm FWHM isotropic
Gaussian kernel)

Extracting tissue-based
regressors

Nuisance regression

Motion censoring

Bandpass filtering
(0.009 < f < 0.08 Hz)

a

=
Correlation map ]}

AFNI's
recommended
RS-FMRI pre-
processing
steps

HJ Jo et al, 2010
and 2013

Carried out using
afni_proc.py




Step 1 = Despiking (before)




Step 1 = Despiking (after)
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Step 2 = Slice Timing Correction

2D Slices acquired at different times within one
3D “volume” TR

Even the same physiological BOLD effect in 2
different slices will show up differently due to
being measured at different times

And so will be less correlated than they “should
be”

Solution: interpolate in time to some common
reference point before calculating correlations

Not perfect, because we are also interpolating
noise



Step 3 = Motion Correction
Step 4 = Alignment with Anatomy
Step 5 = Spatial Normalization

o Step 3: Even more important for RS-FMRI,
since the BOLD effect is smaller and more
spatially diffused than in task-FMRI, so
correcting for subject head motion is crucial

« Step 4: Needed for step 5, and for assigning
RS-FMRI results to brain regions

« Step 5. Needed for group studies



Step 6 = Extract Tissue Based
Regressors

The purpose of tissue based regressors is to
extract fluctuations that are not BOLD signal

S0 we can regress them out of the data at step 8

Common choices include:
o Average white matter (WM) signal time series

o Several principal components of all WM time series
(CompCor method)

o Average global brain signal time series (GS) ®
o Average signal from CSF in ventricles

Less common (only in AFNI): ANATicor ...



ANATIcor — Tissue Based per voxel
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Step 7 = Spatial Blurring

Important for RS-FMRI since the BOLD signal
fluctuations are small

So averaging locally will tend to cancel noise
and add up coherent signals

Important: blur after tissue based signal
extraction

Otherwise, will get unintended signals in WM
and CSF that were blurred in from nearby GM
(gray matter)



Effects of Blurring on Correlation

® |s this a pure vascular/cardiac effect being progressively
smeared? Or real neural correlations seen via BOLD? Or
some of both?



Step 8 = Nuisance Regression - 1

* |In task-FMRI, regression is to find the signal
amplitudes of the task model components while
at the same time removing the nuisance model
components

o Nuisances: motion parameters, motion parameter
time derivatives, WM signals, measured
respiration signal, etc

o In RS-FMRI, there are no task model
components to estimate

o All we want is to remove the nuisance
components and compute the residuals — these
residuals are the output, ready for correlations




Step 8 = Nuisance Regression - 2

* Another operation usually (but not always) used in
RS-FMRI is called bandpassing

* |t involves removing all frequency components from
the data excepft those in a specific band

* Frequency: units are Hertz (Hz)
o 1 Hz =1 cycle per second
o 0.01 Hz = 0.01 cycle per second = 1 cycle in 100 seconds
o 100 Hz = 100 cycles per second = 1 cycle in 0.01 seconds
* |In RS-FMRI, it is common to bandpass out all frequencies

higher than 0.10 Hz and smaller than 0.01 Hz
Keep only 10-100 second cycles; faster or slower = QUT

 The idea is that these do not contain BOLD, just noise, so
should be removed before correlation




Step 8 = Nuisance Regression - 3

* |tis also common to censor out “bad” time points,
so they aren’t used in the correlation
o “Bad” =too much motion, or that volume has too many
“outlier” data points
* |tis important to censor bad time points before the
nuisance regression
o Otherwise, they will affect the regression results and
contaminate residuals even at the un-censored times
* In AFNI, nuisance regression, bandpassing, and
censoring for RS-FMRI are all done in the same
program: 3dTproject
* Which allows for voxel-specific regressors (ANATiIcor)




Step 8 = Nuisance Regression - 4

 Some people did these 2 steps in sequence:
Bandpass the data
Regress other nuisance components from the bandpassed data

* Doing these operations in 2 steps (instead of one) is not
just bad, it is WRONG

« Since the nuisance regressors will contain some of the
unwanted frequency components, these unwanted
components will “leak™ back into the data at the second

regression

If the nuisance regressors were bandpassed themselves, then the
problem would not happen

* The same thing applies to bandpassing and censoring —
they should be done together

* These reasons are why 3dTproject was written



Preprocessing

Despiking

Slice-timing correction

Motion correction

Alignment with anatomy

Spatial normalization

Spatial slmoothing
(with 6 mm FWHM isotropic
Gaussian kernel)

Extracting tissue-based
regressors

Nuisance regression

Motion censoring

Bandpass filtering
(0.009 < f < 0.08 Hz)

a

=
Correlation map ]}

AFNI's
recommended
RS-FMRI pre-
processing
steps

HJ Jo et al, 2010
and 2013

Carried out using
afni_proc.py




Preprocess via afni_proc.py
## Adapted from Example 9b in afni proc.py -help

afni proc.py -subj id s620 \
-dsets s620 rest rl+orig.HEAD
-blocks despike tshift align tlrc volreg
blur mask regress
-tcat remove first trs 2
-volreg align e2a
-blur size 6
-regress_anaticor fast
-regress_censor motion 0.2
-regress_censor outliers 0.1

-regress bandpass 0.01 0.1

R R R R R R R

-regress apply mot types demean deriv

-regress_run clustsim no -regress est blur errts



Adjusting brain-wide nuisances

* Model noise effect on time series and project
* Motion estimates

* Retroicor/RVT/etc requires simultaneous recordings of
cardiac and respiratory cycles

(Glover 2002; Birn 2006; Shmueli 2007; Chang 2009)
* Nuisance signals estimates from dataset
* Tissue-based nuisance regressors
(Beckmann 2004; Fox 2009; Behzadi 2007; Beall 2007, 2010;
Jo 2010, 2013; Kundu 2012; Bright 2013; Boubela 2013)
* Group level adjustments

 (Covariates for motion, brainwide levels of correlation
(Van Dijk 2012; Satterthwaite 2012; Saad 2013; Yan 2013)




AFNI Progams for Correlating - 1

« 3dTcorr1D = correlate all time series in a dataset
with time series in a text 1D file

 3dTcorrMap = correlate each voxel time series In
the input with every other voxel, combine these
correlations in some way (linear, nonlinear), save
that combined correlation as a measure of how
“connected” each voxel is with the rest of the brain

« 3dAutoTcorrelate = correlate each voxel time
series with every other voxel, and save all of these
correlations

* Output dataset will be HUGE unless you are careful and
use a gray matter only mask (e.g., program 3dSeg)




AFNI Progams for Correlating - 2

 AFNI GUI InstaCorr — single subject seed based
correlation by pointing and clicking

« Subject of another talk

* 3dGroupInCorr — group analysis of seed based
correlations, also by pointing and clicking

* Also in the InstaCorr presentation

* AFNI does not contain a program for doing ICA for
network parcellation or identification from RS-FMRI
data

GIFT software from Vince Calhoun lab, for example
http://mialab.mrn.org/software/gift/




Tissue-based nuisance regressors

* Avoid Projecting Fluctuations of Interest

* OK to sample nuisance signals from regions
whose fluctuations are not correlated with the
fluctuations of interest in the regions of interest

« Should not project time series containing

aggregates of fluctuations of interest, even if

they contain contribution from noise

« Sagittal sinus voxels might allow sampling of
aliased heart rate, HOWEVER they also exhibit

BOLD fluctuations of interest from the regions
being modeled (Jo, 2010)



And why not?

* Because you will end up differentially biasing
the correlation matrices of your groups, and
considerably distorting group differences

» Best explained with GSReg (using the Global

Signal as a nuisance Regressor) because math
Is straight forward.

* What follows applies whether or not noise
exists or differs between groups
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Why not GSReq ?

Original (R) After GSReg (5) S-R

- 1.000

0.750 0.720 0.695

0.750

0.720

0.695

Entirely dependent on true covariance matrix P

1.000

1.000

Bias will vary by region pair
AND will be

(therefore your grouping variable)



Why not GSReq ?

Original (R) After GSReg (5) S-R
B A1 A2 A3 B A1 A2 A3 - i

For any FMRI time series (not just simulations)

S—R=(P-(P11'P)/(1'P1)) * 0p0," - P * OpOp"
S-R is constant for group with same cov. matrix P
(Q is also a sole function of P) (Saad, 2013)

B 1.000 0.750 0.720 0.695

Al 0750 1.000

A2 0720 1.000

A3 0695 1.000




Are biased estimates useful?
Region pair dependent biasing is OK if:

Not interpreting correlations between regions as those between
the sampled BOLD signals and by extension neuronal signals

Not just about interpretability of negative correlations (Murphy, 2008;
Weissenbacher, 2009; Cole, 2010)

Two strongly correlated regions after GSReg DOES NOT imply regions were

strongly correlated before GSReg

Using correlations after GSReg as some feature space for
parcellation, classification, etc



Are biased estimates useful?
Region pair dependent biasing is OK if:

Not interpreting correlations between regions as those between
the sampled BOLD signals and by extension neuronal signals

Not just about interpretability of negative correlations (Murphy, 2008;
Weissenbacher, 2009; Cole, 2010)

Two strongly correlated regions after GSReg DOES NOT imply regions were

strongly correlated before GSReg

Using correlations after GSReg as some feature space for
parcellation, classification, etc

Region pair dependent biasing is problematic if:

Comparing two groups with possibly different signal covariance
S—R=(P-(P11'P)/(1'P1)) * 0p0," - P * OpOp'
S-R is constant for group with same cov. matrix P
S-R will differ between groups with different P



An illustrative model

G Frou P LI) ; Observed signal from region 4:

y,=Vw,+e=0.36v,+0.66v;+036v,+0.54dv;+e

Wo |[W; |W, |W3 [W, | Ws
F--
1.00 | 0.56 | 0.48 | 0.39 |o.3: 0.48
|
0.56 | 0.73 : :_//> w,
: Ir connection
0.61 | 0.48 : | weights for
: 1 region 4
0.39 |0.66: 0.64
|
0.63 [}0.361| 0.35
I |
I |
0.54 |0_54: 0.48 Connection Weight
I--- I

0.3 1.0

In simulations 9 regions + background were used



Comparing Groups

Increased connection
between regions 1 and 2 only



Comparing Groups

Difference confined

1

< to two regions

9 7 5 3

13 57 9



Comparing Groups

m Difference confined
B to two regions

1

Ends up all
over the place

9 7 5 3

13 57 9



Distortion of long/short range correlations

Contrast of correlations between groups A and B

‘long-range’ correlations in Group B only

05
04
#0.3

0.2

0.1

- 4-0.1

#n-0.2

Pre-GSReg  Post-GSReg Post-GSReg
r*.-r*
B A
Group A A=+.056
Local Corr. Only
GCOR,=.166 A=-.059 A=-.061
| E— |
Group B l A=-.126
Local and Long A=-.224 / A=-.230
Range Corr.
GCOR,=.273
"local" " "
, long-range , ,
correlations el 3 " Distortion (A) of

Group Differences by

GS Regression
(Saad, 2012, Gotts 201 3)

03
0.4

05

r -value



Comparing Groups with GSReg

One seeks and hopes for differences in covariance/correlation
structures between groups.

Using GSReg means each group will be biased DIFFERENTLY
for different region pairs.

- Even in the absence of noise difference, you can find group correlation
differences in places where none existed before.

—->OK if you're teaching a classifier to differentiate between the
two groups.

—->NOT OK if interpreting correlation differences to evoke
correlation differences of neuronally induced BOLD signal
between these regions.

With noise previous problems remain

- However bias now depends on the covariance structures of
noise and signals of interest though we can't tell them apart.

- Interaction between GSReg projection effects and grouping
variable remains




SAME holds with empirical data

+ GS Regression ANATICOR (Jo,2010)

t-val (N=60)

II24D

TD>ASD
— 2.0

— -2.0

ASD>TD
<-4.0

(Gotts, 2013)



SAME holds with empirical data

ANATICOR

Basic Model + GS Regression -G

Group t-tests

TD > ASD

e

ASD>TD

Partial r>0

Partial r<0

Ip< .005

p<.05

p<.05

Ip<.005

Correlation with SRS
(ASD Group)

Ip< 005

p<.05

p<.05

Ip< .005

(Gotts, 2013)



It is not just GSR

* Nuisance regressors correlated with fluctuations
of interest in regions of interest (not the noise)
will cause the same problems.

* Non-gray matter averages may be comparable to
GSReg (partial voluming with grey matter)

* Averaging over small regions of eroded non-gray
matter tissue are advantageous (Jo, 2010, 2013)

 Decomposition methods that cannot separate
BOLD (fluctuations of interest) from noise also
problematic.



The Siren’s Song

What of results being more stable after GSR?

There is a denoising component to the approach and bias is consistent
for consistent covariance structure

 However, interpretation of correlations is now difficult (Cole,
2010)

 Interaction effect with grouping variable completely ignored

« Differences can get spread in unknown ways

« Tests of processing methods should always consider group
comparisons

What of GSReg for motion compensation?

Some denoising effect = reducing residual variance and motion-based
group differences

However, caveats from above remain
AND are we actually compensating for motion?



Grouping Based on Motion

FCON 1000: Cambridge_Buckner

Mean Motion Mean Motion
Small Movers

i J Big Movers

"0.02 0.04 006 008 0.1
motion



Grouping Based on Motion

FCON 1000: Cambridge_Buckner
1 Base

Largest 4 Clusters

0.6
0.5
(e * :
8 0.4 . 3
‘+ .
Xl b 53
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. :"Q .?” N 1
% RO L
0.2} .;’
0.1
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motion



Grouping Based on Motion

FCON 1000: Cambridge_Buckner
P, Base By GSReg

!"1 Mﬂ

:1 LJnu
salo

4 clusters 3 clusters

\

Largest 4 Clusters

E

0.02 004 0.06 0.08 0.1
motion



Grouping Based on Motion

FCON 1000: Cambridge_Buckner

FCON 1000: Beijing Zang

B, Base B+ GSReg B, Base B+ GSReg
! h!“! Small > Blg Small < Big jla
g | cluster 0 clusters
c_:f; EJ. Group leference p<00| a=0.05 M OLE M @@ﬁ@[ﬁ]
U
M EI‘ r1 More Motion Diffference
O \
E: LJ-_. Much less group difference!
E! 25 Um/TR 29 Um/TR
4 clusters - ‘ 08t | | |
0.5 - 0.5
Loar -7 X 04}
) | 3 O i
O sl Tiahe. © o3 Ao B e
i.:“.:'t.:%"’%. 5 :. . M = ".. :: ::_g':'.’:‘ :: ’:.‘ s ‘-
4 F 0 e g 02} R 1’:" it
%002 004 006 008 0. %002 004 006 008 0.1 (Saad, 201 3)

motion motion



The average correlation of
every voxel with every other

voxel in the brain

Grouping Based on Motion

Mean Motion
Small Movers

Mean Motion

v J Big Movers

0.6}
05+
0.4f :

; f‘ 33:‘ :
0,3- :4‘?’1‘3."‘ ;o‘

> ::&‘“?t”‘ ~,

S s 8
02 % $s
0.1 : . :
0.02 004 006 0.08 0.1
motion

Note weak correlation between motion and
GCOR (R?=11% Cambridge, 4.3% Beijing)

FCON 1000: Cambridge Buckner
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0.04

0.06 0.08

motion

FCON 1000: Beijing_Zang

0.1



Can GSReqg help with motion?

Censoring (scrubbing) high motion samples changes inter-
regional correlations in distance dependent manner.

—> suggests effect of motion on correlations depends on distance

between regions (Power et al. 2012)
—> importance of censoring high motion

Data generously made public by Power & coauthors 2012

(A) GS+MO

Pearson Correlation
Difference

P B0 100 150
Seed-Pair Distance (mm)



Can GSReqg help with motion?

Censoring (scrubbing) samples of high motion changes
Inter-regional correlations in a distance manner.

—> suggests effect of motion on correlations depends on
distance between regions (Power et al. 2012)
—> importance of censoring high motion

Less dependence without GSReg
(A) GS+MO MO+WMe, ..

Pearson Correlation
Difference

Y% 80 100 150 0 50 100 150
Seed-Pair Distance (mm)



Can GSReqg help with motion?

Censoring (scrubbing) samples of high motion changes
Inter-regional correlations in a distance manner.

—> suggests effect of motion on correlations depends on
distance between regions (Power et al. 2012)
—> importance of censoring high motion

Least dependence

(A) GS+MO MO+WMe, ... Despike+MO+WMe ...

Pearson Correlation
Difference

0 50 100 150 0 50 100 150 0 50 100 150
Seed-Pair Distance (mm)



Pearson Correlation
Difference

o C.> = o

2 & o & =

Can GSReg help with motion?

GSReg > Correlation more sensitive to motion
- Correlation more sensitive to censoring

(Jo, 2013)

Improved denoising largely eliminates distance dependent bias
(A) GS+MO Despike+MO+WMe

0.2

LOCAL

0.15

-0.15

02 50 100 150 0 50 100 150
Seed-Pair Distance (mm)



Sampling nuisance TS regressors

« Sample noise without aggregating over regions with
fluctuations of interest
« Erode white matter masks to avoid partial voluming
* Avoiding regions with fluctuations of interest  (Anderson 201 1)

* Local eroded white matter masks improve denoising without
increasing DOFs (Jo,2010,2013)

« Use decomposition methods that can separate BOLD

from non BOLD fluctuations of interest
(Kundu, 2012, Bright, 2013)

or attempt to identify noise components
(Beckmann 2004, Beall 2010, Boubela, 201 3)

* Use noise models RICOR/RVT/etc.
(Glover 2000; Shmueli 2007; Birn 2008; Chang 2009)



Brain-wide correlation adjustments?

If subject to subject variations in brain-wide
correlations exist, why not correct for them?

* Consider GCOR, the average over the entire
correlation matrix of every voxel with every
other voxel (Saad, 2013)

* Measure would be costly to compute if one had to
estimate the entire correlation matrix first.

 However estimating GCOR is trivial:

Y = 1/(M2 ]\]) lT UT U1l g, 1s the average of all

(M) unit variance time

=1/N guT S series of length N in

matrix U



GCOR as group level covariate

* Using models described earlier, we consider
group level correlation (differences) from three
models:

No adjustment: Vij = Bo + P11 x
GSReg atlevel I:  8;;=Po + P1 x
GCOR as covariate: #;;=Po + Bi1x + P2y + Psxy




Less bias than with GSReq for 1

sample tests

Mean Correlations with Region 1

I
2 7 .
£ 0 GSReg
g T X GCOR 5
= = 6
I
Q 7
()]
- o _ 8
o
X 1) 9 -
. region

| | | | |
0.8 0.9 1.0 1.1 1.2

Level-Il Base (fq)



Comparing Groups

Cowbell



Group Contrast, Only Local Change

- Base Y-y GCOR Y-y GSReg
™ ™ ™ |
n H H
N~ N~ N~
(o)) ()] (o))
1357 9 1357 9 1357 9
> - 509 m
I Q!_ A Ol
— O
5 & -
- O | @ ©
T o
<< o GSReg, p< 0.01 ™
= 3- op x GCOR, p< 0.01 S
I I I I

-0.1 0.0 0.1 0.2 0.3
Y-y [ Base



1

9 7 5 3

Group Contrast, Local & Backg. Change

YL — 1 Base YL - GCOR PeL — P GSIReg
: g
o lg}
N~ N~
[ 7] o o
13 57 9 1 3 57 9 13 57 9
— X XX "
LT 000 S
D oy _ (ﬁ RS -
E_' o i Cﬂw e ©
T o GSReg, p< 0.01 "
< o e x GCOR, p<0.01 <
< ?_;m | | | |
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Largest 4 Clusters

GCOR and Motion Grouping

FCON 1000: Cambridge_Buckner

f1 Base

-[®]8a
B

B1 GSReg

B, GCOR

4 clusters 3 clusters 6 clusters
A=25 um/TR
06/ |e—
05+
Q: L .o * .
S04r :
Q 5 i &:: K
00'3_ A:‘g..:.",‘ "
I R T
oizl 3 e
0.1 . 2 .
0.02 0.04 0.06 0.08 0.1

motion

FCON 1000: Beijing_Zang

f1 Base

“ " (none)

B GSReg

1 cluster O cluster
Small >Big  Small < Big

Group Difference, p<0.01, a=0.05

Mean Motion

B, GCOR

(none)

O cluster

Mean Motion

Small Movers N A=29 pm/TR /Big Movers
06t
05¢t —> Mean GCOR
Big Movers
(n'ed I 4
o) 0.4 : . ‘
O . So 84
o 0 3 I . “ "’. o "
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0‘ ®ois ."’0‘ > t'. : '. \
02t -« "7t *+ 1 Mean GCOR
Small Movers
0.1 : : .
0.02 0.04 0.06 0.08 0.1
motion



GCOR as Group Level Covariate

Correlations less biased with GCOR, than GSReg.

 when GCOR has low correlation with grouping variable

Level-ll tests conservative

« Less likely to detect difference as grouping variable and
covariate correlation increases

Adjustment outside of level |l testis NOT recommended

* There is always potential for interaction effect with group

« GCOR (and other params. (Yan 2013)) depend on noise AND/
OR inter-regional correlations of interest

—>contrast results very likely depend on covariate centering

«Centering at overall mean makes sense if GCOR is
driven by noise.

*What if it is also driven by correlations of interest?
—> contrast sign might even get reversed



Conclusions

Stay away from using regions with Fluctuations of Interest to calculate
regressors of No Interest

GSReg and its variants are bad for inter-group comparisons
One MUST consider interactions of method with grouping variable

* Generative models clarify matters since there is no base truth

GCOR is very simple to compute and is useful to assess global
correlation levels

Use of GCOR and comparable measures is better than GSReg

However, their interaction with grouping variable can confound
Interpretation

Use should be as last resort

Use them as covariates and consider interaction terms
Separate covariate modeling prior to level-ll not recommended
Risks of false negatives
Centering issues



Conclusions

The best approach remains with careful denoising
 motion parameter estimates

« physiological measurements (chest belt = plethysmograph,
pulse oximeter, end tidal CO, = ET-CO2)

 |ocal estimates of nuisance signals from eroded white matter
 ANATicor, CompCor

* denoising decompositions in as far as they can dissociate
nuisance estimates from signal fluctuations of interest

Look at your data
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